
PLC_HMI_Controls_Question_List_4.01a.doc FEB 2013

Page 1 of 5

Clipboard Engineering

PLC/HMI Question List (Version 4.01)

Andrew Anselmo

Clipboard Engineering

www.clipboardengineering.com

(To reach me; e-mail first name at this website)

This list was designed as a first pass at selecting a Programmable Logic Controller

(PLC)/microcontroller and Human Machine Interface (HMI). This also applies somewhat to

data acquisition systems. It has been modified over time, based on my experience, and the

experience of other engineers. Feel free to share with anyone (keep the attribution),

especially with people trying to sell you stuff. They should be able to answer every one of

your questions. If anything, this document will help you bring up issues BEFORE you buy

your first piece of hardware.

Technical Details

1) What do you want to do? What is your system supposed to do? What do you need?

Analog input, output, digital input, output; resolution of signals, speed of acquisition,

input and output types (relay, DC, AC) Motion control (stepper motor or servo; size of

motor)? Pulse width modulation (PWM)? Temperature measurement (thermocouple,

RTD, thermistor?) Serial (RS-232 and RS-485) communication? Vision system

integration? How many ports for each protocol? Do you need to have a keyboard,

mouse, USB keychain drive storage? What is the bandwidth of your signals (both input

and output)?

2) Cost - for both hardware, software, extra modules, support contracts? This can depend

on the number of systems you want to build, and how flexible the system is supposed to

be. This is a big topic, and has to be measured against all of the other items mentioned

in this document. See General Notes at the end.

3) Expansion - Is the system expandable? How many IO points can you have? Sometimes

there are limits.

4) Programming - Support- How hard is it to program? What sort of support is there?

How long has the system been in service? How fast can someone help you out? Do

they have a local bulletin board where other users of the system can exchange code,

ideas, bug reports?

5) Programming - Languages- How well documented is it? Are examples available?

What languages does it support (ladder, structured text, and C-like languages are usually

the norm)? Sometimes the programming is graphical (Labview, Eurotherm iTools).

6) Connectivity - USB, serial, Ethernet? How do you set these systems up? How many

different vendors will be involved in this system? If you have one PLC vendor, one

HMI vendor, one motor vendor, etc., there may be issues in connectivity and

interoperability.

7) Many Machines, Small Changes - If you are going to build 10, 100, or 1000 of these,

and there are small recipe changes or differences (for example, offsets, calibrations), how

will you keep track of these? Machines should be easily and individually identifiable. If

PLC_HMI_Controls_Question_List_4.01a.doc FEB 2013

Page 2 of 5

Clipboard Engineering

each machine has an IP address, can you set this on a per unit basis, or does it need to be

programmed in? A small point, but for production systems, you don't want to be

changing code for each IP address. If machine-specific information is needed, it should

be readily identifiable.

8) Code Format - The code itself - is it stored in a proprietary binary format, or is it in text

files? When the code is purely in plain text, it makes for easy comparison with free and

third party tools. When it is stored in binary code, this can be used as a security feature.

9) Comparison tools - How difficult is it to compare two different programs? This is

critically important when things get complicated, or when you have different versions of

the same code.

10) Hardware Security - How good is security for the unit? Does the programming tool

require a dongle, or does it require just a registration code? Dongles are a serious pain,

because if you lose it/forget it, it is a real hassle.

11) Hardware setup/software setup - Does the system automatically recognize hardware?

Can you separate the hardware setup and software setup, if you need to modify things

down the road?

12) Variables and Defaults - For the PLC, can you upload/download variables separately

from the code? Some systems allow you to do this. This is good when you need to

clone a machine, or backup a system.

13) Recipes - Do you need to read/write recipes, or do remote data acquisition or updating of

systems? B&R has a nice way of doing this via a tool called PVI Transfer; a very

powerful way of getting data in and out of the system.

14) Databases and Data Recording - Getting data in and out of the system - how difficult is

it to hook up the PLC to a database? Or dump data to a file? Do you need to spend extra

money to get the tools for this? Are there sample programs you can look at?

15) Worldwide Support - If the system is going overseas, what is their worldwide support

like, for both parts and technical support?

16) Integrated Development Environment (IDE) - PLC Simulation - For the integrated

development environment (IDE), do they have a simulator for the PLC, or for other

equipment?

17) Code Documentation - Can you print out/export the code easily? Sometimes you can do

comparisons of code this way. Can you print out a list of variables and their values?

18) Math Libraries and Functions - Check out the math library. Does it have the functions

you want? If you have some obscure function or logic needed (trig functions, lookup

functions, etc.) can the system provide that?

19) Changing code 'on the fly' - If you have a running system, and you need to update it,

can you do so? Some systems are a bit more robust than others, and download new code

pretty quickly. Others require to stop the program, download the code, and it sometimes

takes a long time, which can kill the process you are running. Might not be so bad for

big time constant systems with large thermal masses, but sometimes this can't be done.

20) Memory and Program Size, Language Capability - How many variables can you use;

can you use arrays? Multidimensional arrays? How well is the programming language

implemented; can you pass by reference, pass by value (for functions); return more than

one value from a function, etc.

21) Overriding Values/Debugging - In the PLC IDE, are there tools to override values, or

at least see values? Check out their debugging tools.

PLC_HMI_Controls_Question_List_4.01a.doc FEB 2013

Page 3 of 5

Clipboard Engineering

22) IDE - Use and Documentation - Get the manual for the system and the IDE, and see

how they work. Do they have search and replace functions? How well is the IDE

implemented? If you go to another computer, what files have to be transferred? What

happens if you have special routines, icons, etc.? Where are they stored?

23) Storage and Memory Locations; Battery Backup - where is the program stored in the

system? On a CF card, or in some other memory? Most PLCs have a 'low battery'

indicator; check to see if it has one.

24) Security of Code - if you download the code, does the system strip out comments? Once

the code is downloaded, can you extract it from the machine? Some people want this

feature, some people don't. Some systems give you the option of doing both (i.e. Red

Lion/Eurotherm Penguin).

25) Updates - how are they handled? Do they have release notes for their IDEs? Can new

firmware be downloaded to the PLC if necessary?

26) Hardware - Cabinets - how does it look, and handle? Do you need enclosures for their

I/O points? Do they have ready-made cabinets? Does it have any special connectors

unique (and probably costly) to the specific vendor?

27) Integration With Other Specialty Devices - Will the system integrate with other

elements in your workspace? Do you need the PLC to talk to something like a high

precision DVM, or other exotic instrument? Usually, if the systems have serial

connectivity, this is pretty much guaranteed, but you need to figure out what you want to

do.

28) Web Browsers - Do you want the system to serve data over the web, viewable by a

simple browser? Some systems (more on the microcontroller side) can be even

programmed via languages like Python.

29) Open Source - Do you want the system to be open source, or at least open source

friendly (that is, have your end users modify things)? The Arduino UNO, Mega, and

DUE have some pretty impressive capabilities, but may not be industrially bullet-proof as

standard PLCs.

30) Data Acquisition - Ready Made Tools? Do you want basic data acquisition software to

work "out of the box?" Some PLCs and data acquisition systems have great tools for data

acquisition, but sometimes they have limitations with regard to storage of data, the

amount of time they can run, and how they format and store data. Check to see what they

can do!

For HMIs, the same sort of stuff applies, but you can add in:

1) Ability to log data, create web pages - how difficult is it to remotely view the screen?

2) How difficult is it to interface with your PLC? Can it share address space, or at least

load up a list of the PLC variables?

3) How difficult is it to build screens? What happens when you have lots of data?

Aligning columns, mapping variables to input/output? This will impact the final look of

the system.

4) What do you need in the HMI screen? How big (or small) can the screen be? Can

you go from one size to another without changing the program much?

PLC_HMI_Controls_Question_List_4.01a.doc FEB 2013

Page 4 of 5

Clipboard Engineering

5) Features - Check out the touch screen features, and find out if the screen works in your

environment (i.e., can you work it with gloves on?)

6) Connectivity - Does it connect to the PLC via Ethernet/Modbus, serial RS-232/RS-485,

or another protocol?

7) Alarms and Events - How does the system handle alarms, security, event logging?

Some systems can record every keystroke or variable change, which is excellent for

process documentation.

8) What is the HMI programming like? Is it just an interface to the PLC, or does it have

some logic handling capabilities? Usually, I like to keep the logic on the PLC side for

clarity, but sometimes, a bit of flexibility on the HMI is nice, and also needed.

9) Graphics - Do you want X-Y plots, bar charts? Some systems are very flexible, some

are not. Do you want to see pictures, or display PDFs, or manuals?

10) Color/Backlighting - Do you want color? Backlighting?

11) Environment – Where will the unit be located, and what is the physical environment?

Heat, humidity, dust; will it be in a washdown or sterile environment?

12) Security - Some HMIs can record every keystroke - great for knowing if someone is

fiddling, but also good if you forget to write things down.

13) Don't be enamored of the HMI - Sometimes, physical switches, buttons, and joysticks

are better choices for inputs to the system.

Non-Technical Details

1) Not All Companies Do Everything Well or Cheaply - Some companies make great

software for one thing (Matlab), but may fall down in the automation area, or great

automation software, but fall down in database connectivity. Check to see what they've

done (references - see below).

2) References - Ask your vendor for references - how many people have used their

hardware/software? This is *critical*. See if you can talk to those companies "off the

record"; many won't bad mouth their vendor, but will give you a good sense of how many

problems they have had. Ask them this one question - "Would they use this/specify this

system again?"

3) How Important Is This Hardware To Your Vendor? How many in-house developers

do they have working on this project/system? This gives you an idea if this is a sideline

or a main thrust of their company.

4) Upgrades - How often are patches released? Are these patches free forever, or is there a

maintenance contract? Beware of automatically upgrading; sometimes, other things break

after something else has been fixed. Always ask for detailed release notes, if possible -

n.b. Don't upgrade anything before a demo to investors or contract monitors.

5) Beware of 'bleeding edge' technology. Stuff that has been around for 5-10+ years may

not have the slickest interface, but have been tested in the real world, by real engineers,

solving real problems.

6) Good Support Will Be Rewarded - When discussing with vendors, make sure they

know you talk to other engineers. Tell them systems you are happy with, and systems

you are not happy with. Knowing you will extol their virtues to others, or hammer them

informally can be a powerful incentive.

PLC_HMI_Controls_Question_List_4.01a.doc FEB 2013

Page 5 of 5

Clipboard Engineering

7) Help With Your Project - Asking help for one-off projects is usually more difficult

than asking for help when you are going to buy 10,100, or 1000 units over a long time.

You may want to quote the upper end of your build projections, so they will take you

more seriously. Talk to sales reps representing different vendors, and get a feel for their

product as well as their competitors. Don't be afraid to ask "Why should I buy X from

you, instead of Y from the folks down the street?"

8) Demo Units - Get demo units/software whenever possible. Usually, you can get them on

loan for a few weeks to evaluate things.

9) Know What You Want and Write It Down! - Write 'requests for quote' so you have

your specifications in writing; this helps get your own 'house in order', and gives all

vendors competing a common plan to work from.

General Notes

1) Always think about what you want to do, and what is your final goal. Ask yourself

"Has this been done someplace else? Can I buy it off the shelf?"

2) Beware of the Not Invented Here (NIH) syndrome. You don't need to reinvent the

wheel.

3) Remember the general engineering mantra "better, cheaper, faster - pick only two."

4) Think about overall cost - many times, a 'cheap' system is cheap upfront, but requires

lots of engineering/programming time on the back end. This is especially true for

systems that are low volume production systems. The cost of controls may be minor

compared to the cost of the rest of the system.

5) Document, document, document! A good system that has documentation can be

debugged, upgraded, understood and fixed; a slick system with no manual can be a

nightmare to maintain, use and duplicate. For hardware, take lots of digital pictures; for

HMI screens, take lots of screen shots. Documentation should be tightly coupled to the

system; if possible, document within the code itself.

6) Backups - When writing software, make sure you have a good version control system, or

other way of being able to 'go backwards' and get to a working version of code.

7) Use version numbers in your software, so you know what version is being used in the

machine. Display this on the HMI screen someplace.

8) Quality is remembered long after the price is forgotten.

